【2016新课标I卷理科13题·原题】
设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=_________
【答案】:-2
【知识点】向量的数量积及坐标运算
【试题分析】:本题比较简单,但是考察的知识点比较全面,命题人还是用心良苦的,学生如果掌握的知识全面的话,去做本题有很多种方法,所以本人把本题选上也是为了让广大读者尤其是学生可以从多方面去考虑本题的解法,回顾一下高中向量的知识。
【解法一】:
由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2
【解法二】:
因为,a+b=(m+1,1+2)=(m+1,3)
所以,|a+b|2=(m+1)2+9
|a|2+|b|2=m2+1+1+4=m2+5
因为|a+b|2=|a|2+|b|2
所以,m2+6=(m+1)2+9,得到m=-2
【解法三】:
|a|2=m2+1,|b|2=5
因为,|a+b|2=|a|2+|b|2+2·ab=|a|2+|b|2
所以,2·ab=0
所以,m×1+1×2=0,解得m=-2
Tags:三角向量(18)高考真题(39)
本站原创,转载请注明出处: http://gao.wulaoshi.net/60/3731.html